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Non-local corrections to the DFT-LDA electron conductance in nanoscale systems
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Using time-dependent current-density functional theory, we derive analytically the non-local
exchange-correlation correction to the conductance of nanoscale junctions. The correction per-
tains to the conductance calculated in the zero-frequency limit of time-dependent density-functional
theory within the adiabatic local-density approximation. In particular, we show that in linear re-
sponse the correction depends non-linearly on the gradient of the electron density; thus, it is more
pronounced for molecular junctions than for quantum point contacts. We provide specific numerical
examples to illustrate these findings.

Recent attempts to apply static density-functional the-
ory [1] (DFT) to electronic transport phenomena in
nanoscale conductors have met with some success. Typ-
ical examples are atomic-scale point contacts, where
the conductance, calculated with DFT within the local-
density approximation (LDA), is found to be in excel-
lent agreement with the experimental values [2]. When
applied to molecular junctions, however, similar calcu-
lations have not been so successful, yielding theoreti-
cal conductances typically larger than their experimen-
tal counterparts [3]. These discrepancies have spurred
research that has led to several suggested explanations.
One should keep in mind, however, that these quantita-
tive comparisons often neglect some important aspects
of the problem. For instance, the experimentally re-
ported values of single-molecule conductance seem to be
influenced by the choice of the specific experimental set-
up [4, 5, 6, 7]: different fabrication methods lead to differ-
ent conductances even for the same type of molecule, with
recent data appearing to be significantly closer to the
theoretical predictions [7] than data reported in earlier
measurements [8]. In addition, several current-induced
effects such as forces on ions [9] and local heating [10]
are generally neglected in theoretical calculations. These
effects may actually generate substantial structural insta-
bilities leading to atomic geometries different than those
assumed theoretically. However, irrespective of these is-
sues, one is naturally led to ask the more general question
of whether static DFT, within the known approximations
for the exchange-correlation (xc) functional, neglects fun-

damental physical information that pertains to a truly
non-equilibrium problem. In other words, how accurate
is a static DFT calculation of the conductance within
the commonly used approximation for the xc functional,
LDA, compared to a time-dependent many-body calcu-
lation?

In this Letter we provide an answer to this ques-
tion. Specifically, we seek to analytically determine
the correction to the conductance calculated within the
static DFT-LDA approach and illustrate the results with
specific examples. A few recent attempts were made
in this direction. For instance, Delaney et al. [11]
used a configuration-interaction based approach to cal-
culate currents from many-body wavefunctions. While
this scheme seems to yield a conductance for a specific
molecule of the same order of magnitude as found in ear-
lier experiments on the same system, it relies on strong
assumptions about the electronic distribution of the par-
ticle reservoirs [11]. Following Gonze et al. [12], Evers et

al. [13] suggested that approximating the xc potential of
the true nonequilibrium problem with its static expres-
sion is the main source of discrepancy between the ex-
perimental results and theoretical values. However, these
authors do not provide analytical expressions to quantify
their conclusion.

Our system is the nanojunction illustrated in Fig. 1,
which contains two bulk electrodes connected by a con-
striction. In order to understand the dynamical cur-
rent response, one must formulate the transport problem
beyond the static approach using time-dependent den-
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FIG. 1: Schematic of a nanoscale junction between electrodes
with applied bias V . Due to non-local exchange-correlation
(xc) effects there is an xc field which gives rise to an additional
voltage drop V dyn compared to the electrostatic potential dif-
ference.

sity functional theory [14, 15, 16] (TDDFT). In the low
frequency limit, the so-called adiabatic local-density ap-
proximation (ALDA) has often been used to treat time-
dependent phenomena in inhomogeneous electronic sys-
tems. However, non-locality in space and time of the
exact xc kernel introduces an additional xc field be-
yond ALDA [17]. This extra field, when acting on the
electrons, induces an additional resistance Rdyn, which
is otherwise absent in the static DFT calculations or
TDDFT calculations within the ALDA [18]. Our goal
is to find an analytic expression for this resistance and
then estimate its value in realistic systems. We will show
that the dynamical xc field opposes the purely electro-
static field: one needs a larger electric field to achieve
the same current, implying that the resistance is, as ex-
pected, increased by dynamical xc effects.

We proceed to calculate the xc electric field. This
quantity was determined by Vignale, Ullrich and Conti
using time-dependent current-density functional theory
(TDCDFT) [19, 20]. In their notation, this field is

Eα(r, ω) = EALDA
α (r, ω) −

1

en
∂βσαβ(r, ω), (1)

where EALDA
α (r, ω) is the ALDA part of the xc contribu-

tion, σαβ(r, ω) is the xc stress tensor, and e is the elec-
tron charge. Here n = n0(r) is the ground-state number
density of an inhomogeneous electron liquid. We are in-
terested in the dynamical effects that are related to the
second term on the RHS of Eq. (1), i.e.,

Edyn
α (r, ω) ≡ −

1

en
∂βσαβ(r, ω). (2)

In the static limit [19], we can transform Edyn
α into an

associated potential by integrating between points a and
b inside the electrodes lying on the z axis. We take the
z-direction to be parallel to the current flow. The end
points a and b are in regions where the charge density
does not vary appreciably, i.e., ∂z(1/n)|ba ∼ 0 (see Fig. 1).

This yields

V dyn = −

∫ b

a

lim
ω→0

ReEdyn · dl

=

∫ b

a

1

en
lim
ω→0

Re ∂βσzβ(r, ω)dz. (3)

Importantly, we include here only the part of the elec-
tric field that varies in phase with the current (i.e., we
take the real part of the stress tensor). In general—
e.g., at finite frequency—the electric field has both an
in-phase (dissipative) and an out-of-phase (capacitive)
component, where the latter is related to the shear modu-
lus of the inhomogeneous electron liquid. Such capacitive
components play a crucial role in the theory of the dielec-
tric response of insulators. We ignore them here on the
basis that they do not contribute to the resistance [21].

The general xc stress tensor in TDCDFT is given by

σαβ(r, ω) = η̃(n, ω)

(

∂βuα + ∂αuβ −
2

3
∇ · u δαβ

)

+ζ̃ (n, ω)∇ · u δαβ , (4)

where η̃(n, ω) and ζ̃(n, ω) are the frequency-dependent
viscoelastic coefficients of the electron liquid, while u =
j/n and j are the velocity field and the particle current
density, respectively, induced by a small, time-dependent
potential.

The viscoelastic coefficients are given by

η̃(n, ω) = −
n2

iω
fh

xc,T (ω) (5)

and

ζ̃(n, ω) = −
n2

iω

{

fh
xc,L(ω) −

3

4
fh

xc,T (ω) − ǫ′′xc

}

, (6)

where fh
xc,L(ω) and fh

xc,T (ω) are, respectively, the longi-
tudinal and transverse xc kernel of the homogeneous elec-
tron gas evaluated at the local electron density n = n0(r),
while ǫ′′xc is simply

ǫ′′xc =
d2ǫxc(n)

dn2

∣

∣

∣

∣

n0(r)

. (7)

In the representative systems that we examine below,
the derivatives in the transverse directions x and y ac-
count for only a small fraction of the total dynamical xc
field and can hence be ignored. We thus obtain

Ez = −
1

en
∂zσzz . (8)

We then see that

σzz =
4η

3
∂zuz (9)
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where the viscosity η = limω→0 Reη̃(ω) is a function of n,
and therefore of z. The real part of ζ̃(ω) vanishes in the
limit of ω → 0. Under the same assumptions of negligible
transverse variation in current density [22], we can write

uz =
I

enAc
(10)

where I > 0 is the total current (independent of z), and
Ac is the cross sectional area [23]. Substituting this into
the equation for the voltage drop and integrating by parts
we arrive at

V dyn = −
4I

3e2Ac

∫ b

a

η
(∂zn)2

n4
dz . (11)

Because η is positive, we see that the right hand side of
this equation is negative-definite: the electrostatic volt-
age is always opposed by the dynamical xc effect. We
identify the quantity on the right hand side of Eq. (11)
with −RdynI, where Rdyn is the additional resistance due
to nonlocal effects. According to TDCDFT, the current
that flows in the structure in response to an electric po-
tential difference V is given by

I = Gs(V + V dyn) = Gs(V − RdynI) (12)

where Gs is the conductance calculated in the absence
of dynamical xc effects (e.g., by means of the techniques
of Ref. 24). Solving Eq. (12) leads immediately to the
following expression for the total resistance R = V/I:

R =
1

Gs
+ Rdyn , (13)

where

Rdyn =
4

3e2Ac

∫ b

a

η
(∂zn)2

n4
dz. (14)

The dynamical xc term thus increases the resistance.
This is the central result of our paper. It shows that

the non-local effects (beyond ALDA) on the resistance
depend nonlinearly on the variation of the charge density
when the latter changes continously from one electrode
to the other across the junction. In a nanojunction, this
correction is non-zero only at the junction-electrode in-
terface where the electron density varies most. Knowing
the charge density one can then estimate this resistance.

Let us thus consider two specific examples that have
attracted much attention, namely the gold point con-
tact and the molecular junction formed by a benzene-
dithiolate (BDT) molecule between two bulk electrodes
(see insets in Fig. 2) and estimate the error made by
the (A)LDA calculation in determining the resistance.
In order to make a connection between the microscopic
features of these junctions and the density in Eq. (14),
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FIG. 2: Planar (dashed line) and macroscopic (solid line)
averages of the charge density for a gold point contact (left)
and a molecular junction (right).

we model the charge density n = n0(r) as a product of
smoothed step functions in every direction, i.e.,

n0(r) = neΞ(z, d, γe)

+ncΩ(x, h, γc)Ω(y, w, γc)Ω(z, d, γe). (15)

The smoothed step function is given by

Θ(z, l, γ) =
1

e(z+l/2)/γ + 1
, (16)

where l is the full-width at half-maximum and γ is the de-
cay length. Here, Ω(z, l, γ) = Θ(z,−l, γ)− Θ(z, l, γ) and
Ξ(z, l, γ) = 1−Ω(z, l, γ); Ω(z, l, γ) represents the density
distribution of the junction nc, which smoothly connects
to the constant bulk density ne of the two electrodes sep-
arated by a distance d. Finally, h and w represent the
lateral dimensions of the junction.

The electron densities are obtained from self-consistent
static DFT calculations with the xc functional treated
within the LDA [25]. The (111) gold surface orientation
is chosen for both the point contact and the molecular
junction (see schematics in Fig. 2).

In Fig 2 we plot the planar and macroscopic averages
of the self-consistent electron densities for both systems
as a function of distance from the center of the junction
along the z-direction. The macroscopic average is then
fitted to the simple charge model in Eq. (15). The fitted
density is then substituted in Eq. (14) to find the cor-
rection to the resistance. The estimated value of Rdyn

[26] for the point contact is ∼0.2 KΩ, while for the BDT
molecule is ∼40KΩ. As expected, Rdyn for BDT is larger
than that for the point contact due to the larger variation
of the average density between the bulk electrodes and
the molecule. In Fig. 3 we plot the resistance in Eq. (14)
as a function of the ratio ne/nc and the decay constant
γ, where we fix ne to the value of bulk gold (rs ≈ 3). The
resistances of the two specific examples are indicated by
dots in the figure. It is clear that nonlocal contributions
to the resistance can become substantial when the gradi-
ent of the density at the electrode-junction interface be-
comes large. These corrections are thus more pronounced
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FIG. 3: The resistance due to non-local effects as calculated
from Eq. 14 with the charge density determined from DFT-
LDA calculations as a function of the main parameters dis-
cussed in the text. The resistance of a gold point contact and
a BDT molecular junction are indicated by dots.

in organic/metal interfaces than in nanojunctions formed
by purely metallic systems.

The resistance calculated within the linear response
using static DFT is about 12 KΩ for the point contact [27]
and 360 KΩ for the BDT junction [24]. The neglect of
nonlocal effects thus accounts for an error of about 2%
and 11% for the point contact and the BDT molecule,
respectively.

In summary, we have shown that dynamical non-local
effects in the xc potential contribute an additional resis-
tance relative to the static DFT-LDA one. The magni-
tude of the additional resistance, within linear response
and the zero-frequency limit, depends on the gradient of
the charge density across the junction. This additional
resistance is thus larger in molecular junctions than in
quantum point contacts.
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